江南电竞logo >高考复习 >高中数学 >

二元一次方程的解法是什么 解题过程整理

时间: 高中数学

“消元”是解二元一次方程组的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。

二元一次方程的解法整理

1.代入消元法

(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.。这种解方程组的方法叫做代入消元法,简称代入法。

(2)代入法解二元一次方程组的步骤

①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;

②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);

③解这个一元一次方程,求出未知数的值;

④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;

⑤用“{”联立两个未知数的值,就是方程组的解;

⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。

2.加减消元法

(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。

(2)加减法解二元一次方程组的步骤

①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;

②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);

③解这个一元一次方程,求出未知数的值;

④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;

⑤用“{”联立两个未知数的值,就是方程组的解;

⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

二元一次方程的解题过程是什么

1)A、B两地相距500千米,甲、乙两车由两地相向而行,若同时出发则5小时相遇;若乙先出发5小时,则甲出发后3小时与乙相遇。求甲乙两车速度。
解: 设甲车速度为X km/h,乙车速度为Y km/h,列方程

答:甲车速度为60km/h,乙车速度为40km/h。

2)两个物体在周长等于100米的圆上运动,如果同向运动,那么它们每隔20秒相遇一次;如果相向运动,那么它们每隔5秒相遇一次。求每个物体的速度。

解:设速度快的速度为Xm/s,慢的为Y m/s,列方程

答:速度快的为12.5m/s,速度慢的为7.5m/s。

Baidu
map