当前位置: 江南电竞logo > 高考复习 > 高中数学 >正文

x的x次方求导公式推导

2021-03-20

x求的x次方的导可以用换元法。令:y=x^(x)则:y=x^(x)=e^[ln(x^x)]=e^(xlnx),即:y'=(x^x)(lnx+1)。

x的x次方怎么求导

(x^x)'=(x^x)(lnx+1)

求法:令x^x=y

两边取对数:lny=xlnx

两边求导,应用复合函数求导法则:

(1/y)y'=lnx+1

y'=y(lnx+1)

即:y'=(x^x)(lnx+1)

导数公式

1.C'=0(C为常数);

2.(Xn)'=nX(n-1) (n∈R);

3.(sinX)'=cosX;

4.(cosX)'=-sinX;

5.(aX)'=aXIna (ln为自然对数);

6.(logaX)'=1/(Xlna) (a>0,且a≠1);

7.(tanX)'=1/(cosX)2=(secX)2

8.(cotX)'=-1/(sinX)2=-(cscX)2

9.(secX)'=tanX secX;

10.(cscX)'=-cotX cscX。

点击查看高中数学更多内容

Baidu
map